НАУЧНЫЙ ПОДХОД К TEME «ДЫШАЩИХ CTEH»

Часть 2

П.П. ПАСТУШКОВ, НИИСФ РАССН

Автор статьи проводит анализ определения «дышащие стены» в части удовлетворения требований действующего СНиП «Тепловая защита зданий».

На строительных конференциях и выставках, а также просто в рассуждениях людей, занятых строительством, сейчас очень часто можно услышать выражение «дышащие стены». Иногда, критерий: «такая стена будет дышать, а такая не будет» является определяющим при выборе материалов для ограждающей конструкции здания. «Дыхание» стен можно трактовать с двух точек зрения: во-первых, с точки зрения воздухопроницаемости — тогда под «дышащими» понимаются стены, обеспечивающие воздухообмен в помещении, а во-вторых, с точки зрения сопротивления паропроницанию — тогда подразумевается отсутствие влагонакопления внутри и конденсата на поверхности ограждающей конструкции.

В работе [1] показано, что конструкции, подпадающие под эти определения, не удовлетворяют требованиям СНиП «Тепловая защита зданий» [2]. Т.е. когда говорят, что эта стена «дышит», тем самым подчеркивая ее положительные качества, — это не только не является благом, но и является нарушением действующих строительных норм. В работе [1] приведены примеры расчета нескольких типов многослойных конструкций с использованием в качестве утеплителя экструдированного пенополистирола в различных климатических зонах строительства по стационарной методике оценки влажностного режима из [2]. Данный метод позволяет проверить конструкцию по условиям недопустимости накопления влаги в ней за годовой период эксплуатации и ограничения влаги за период с отрицательными средними месячными температурами наружного воздуха.

С 30-х годов XX века известны нестационарные методы расчета влажностного режима [3], а в 1984 г. НИИ строительной физики было выпущено руководство по такому расчету [4]. В последние 2 года прошла актуализация описанного в [4] метода и выпущен новый стандарт, содержащий математическую модель нестационарного влажностного режима ограждающих конструкций зданий [5]. Используя описанную в этом нормативном документе математическую модель, возможно провести численные расчеты с заданием нестационарных условий эксплуатации ограждающих конструкций и, как результат, получить распределение влажности внутри конструкции в любой момент времени после начала

эксплуатации. Также возможно количественно оценить значение влажности на внутренней поверхности стены, т.е. проверить возможность выпадения конденсата внутри помещения, а это одна из тех вымышленных проблем, которая часто озвучивается, когда в качестве утеплителя стены планируется использование экструдированного пенополистирола (XPS).

Настоящая статья посвящена описанию расчетов нестационарного влажностного режима многослойных конструкций с использованием основных типов эффективных утеплителей в различных городах строительства России. Исследованы стены из газобетона марки D400 с фасадной системой со скрепленной теплоизоляцией (СФТК) с наружным тонким штукатурным слоем. В табл. 1 сведены составы исследуемых конструкций изнутри наружу. В качестве вариантов используемого материала утеплителя рассмотрены: а) минеральная вата, б) фор-

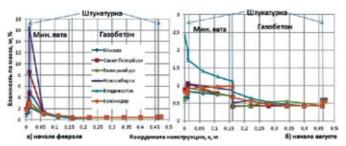


Рис. 1. Распределение влажности внутри конструкции с минеральной ватой

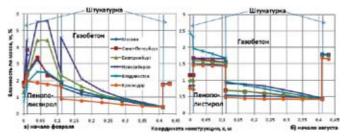


Рис. 2. Распределение влажности внутри конструкции с пенополистиролом

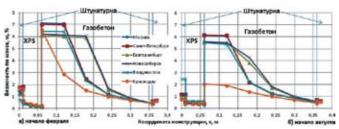


Рис. 3. Распределение влажности внутри конструкции с XPS

Таблица 1. Конструкции стен

Состав стены изнутри наружу	Толщина	Плотность,	Коэффициент теп. ловиях эксплуата	Коэффициент паропроницаемости,			
	слоя, δ, м	ρ_0 , $\kappa \Gamma/M^3$	A	Б	μ, мг/(м·ч·Па)		
Штукатурка по газобетону	0,02	1550	0,76	0,93	0,05		
Газобетон D400	0,3	450	0,14	0,15	0,135		
а) Минеральная вата ROCKWOOL ФАСАД БАТТС	0,15	145	0,04	0,042	0,51		
6) Пенополистирол ПСБ-С 25	0,1	20	0,04	0,45	0,05		
в) XPS ПЕНОПЛЭКС Стена	0,05	30	0,031	0,032	0,008		
Наружный штукатурный слой	0,01	1550	0,76	0,93	0,09		

Таблица 2. Температуры на начало месяца

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Москва	-8,75	-9,7	-6,75	0,05	8,15	13,95	17,05	17,2	13,5	7,5	1,2	-4,6
Санкт-Петербург	-6,4	-7,8	-5,85	-0,4	6,45	12,4	16,4	16,9	13,45	7,9	2,3	-2,65
Владивосток	-11,15	-11,45	-6,1	1,2	7,35	11,85	16,15	19,75	18,9	13,25	4,7	-4,75
Краснодар	-0,25	-1,1	1,85	7,8	14,15	18,85	22	23	20,15	14,5	8,5	3,35
Екатеринбург	-14,3	-14,55	-10,25	-2,1	6,35	12,55	16,15	16,05	12,05	5,2	-2,8	-9,95
Новосибирск	-17,65	-18,05	-13,7	-4,3	5,9	13,5	17,85	17,4	12,95	6	-3,65	-12,85

Таблица 3. Относительная влажность воздуха на начало месяца

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Москва	84,5	82,5	79,5	72	62	58,5	61	65,5	70,5	75,5	80	83,5
Санкт-Петербург	87	85	81	75,5	69,5	67	69,5	74	79	82,5	85,5	87,5
Владивосток	63,5	64	65,5	68	73	82,5	90	90	83	73	65	62,5
Краснодар	84,5	83,5	79,5	72,5	67,5	66,5	65	63,5	65,5	72	79	83
Екатеринбург	80,5	78	73,5	67,5	61	59	64	70	73,5	76	78	80
Новосибирск	81	79	78	74	64,5	62,5	69	74	76	76,5	79,5	82

мованный пенополистирол, в) экструдированный пенополистирол (XPS).

При расчетах принималось, что температура и влажность в помещении остаются постоянными в течение года и равны $+20^{\circ}$ С и 55%, соответственно. Температура и относительная влажность воздуха снаружи изменяется. В табл. 2 и 3 представлены данные из СНиП «Строительная климатология» [6], рассчитанные на начало месяца, для различных городов строительства. Эти данные нужны для задания граничных условий при численных расчетах.

На рис. 1-3 представлены графики распределения влажности внутри конструкций в различных городах строительства. Результаты приведены на начало февраля и начало августа, соответственно, после 3-х лет эксплуатации здания. Месяцы выбраны из условия наибольшего и наименьшего влагонакопления внутри слоя утеплителя.

Анализ представленных графиков позволяет сделать вывод, что влажность на внутренней поверхности стены при использовании в качестве утеплителя минеральной ваты и экструдированного пенополистирола (XPS) не превышает 1%; при использовании формованного пенополистирола -2%.

Таким образом, с помощью численных расчетов и сравнения фасадных конструкций с применением основных

типов эффективных утеплителей в различных городах строительства РФ развенчано бытующее мнение о том, что при использовании экструдированного пенополистирола «стены не дышат» и на внутренней поверхности может выпадать конденсат. Как показано в работе, этого не происходит даже в период наибольшего влагонакопления ни в одной климатической зоне строительства. При этом по сравнению с другими типами утеплителей при применении XPS влажность на внутренней поверхности стены даже меньше.

Библиографический список

- Пастушков П.П. Научный подход к теме «дышащих стен» // СтройПРОФИль, 2013, № 6 (108), с. 20-22.
- 2. СП 50.13330.2012. Актуализированная редакция СНиП 23-02-2003 «Тепловая защита зданий».
- 3. Фокин К.Ф. Расчет последовательного увлажнения материалов в наружных ограждениях // В кн.: Вопросы строительной физики в проектировании. М.-Л.: Стройиздат. 1941, с. 2-18.
- 4. Руководство по расчету влажностного режима ограждающих конструкций зданий. М.: Стройиздат. 1984, 168 с.
- 5. ГОСТ 32494-2013. Межгосударственный стандарт «Здания и сооружения. Метод математического моделирования температурно-влажностного режима ограждающих конструкций».
- 6. СП 131.13330.2012. Актуализированная редакция СНиП 23-01-99* «Строительная климатология».